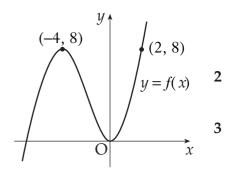
dec revision 1 solutions

1. (a) Express $f(x) = x^2 - 4x + 5$ in the form $f(x) = (x - a)^2 + b$. [SQA]

- (*b*) On the same diagram sketch:
 - (i) the graph of y = f(x);
 - (ii) the graph of y = 10 f(x).
- (c) Find the range of values of x for which 10 f(x) is positive.

Part	Marks	Level	Calc.	Content	Answer U1 OC2
<i>(a)</i>	2	С	NC	A5	a = 2, b = 1 2002 P1 Q7
(b)	4	С	NC	A3	sketch
(C)	1	С	NC	A16, A6	-1 < x < 5
•2 •3 •4 •5 •6	square	erpret m erpret y-: ect in x-: nslate pa	.g. co inimum intercep axis ırallel to	ot	 ¹ a = 2 ² b = 1 ³ any two from: parabola; min. t.p. (2,1); (0,5) ⁴ the remaining one from above list ⁵ reflecting in <i>x</i>-axis ⁶ translating +10 units, parallel to <i>y</i>-axis ⁷ (-1,5) i.e. −1 < x < 5

Quest


4

2

Quest

4

- [SQA] 2. The diagram shows a sketch of the function y = f(x).
 - (*a*) Copy the diagram and on it sketch the graph of y = f(2x).
 - (*b*) On a separate diagram sketch the graph of y = 1 f(2x).

Part	Marks	Level	Calc.	Content	Answer	U1 OC2
<i>(a)</i>	2	В	CN	A3	sketch	2009 P1 Q23
(b)	3	В	CN	A3	sketch	
• ² • ³ • ⁴		rect orde	aph er for rei otate fii	fl(x) and trans nal sketch	 ¹ sketch and one of (0, (-2,8)) ² remaining points ³ reflect in <i>x</i>-axis the translation ⁴ sketch and one of (0,1) (-2,-7) ⁵ remaining points 	n vertical

[SQA] 3. Differentiate
$$\sin 2x + \frac{2}{\sqrt{x}}$$
 with respect to *x*.

Part Marks Calc. Content U3 OC2 Level Answer 1989 P1 Q10 2 С NC C3 C20 2 A/B NC $2x^{-\frac{1}{2}}$.1 cos 2x _3 × 2 $-x^{-\frac{3}{2}}$ 4

hsn.uk.net

Quest

[SQA] 4. Find the coordinates of the point on the curve $y = 2x^2 - 7x + 10$ where the tangent to the curve makes an angle of 45° with the positive direction of the *x*-axis.

4

4

Part	Marks	Level	Calc.	Content	Answer	U1 OC3
	4	С	NC	G2, C4	(2,4)	2002 P1 Q4
• ² • ³	pd: pro	cess gra ate equi	dient fr valent e	differentiate om angle expressions e	• $\frac{dy}{dx} = 4x - 7$ • $$	

[SQA] 5. Find the *x*-coordinate of each of the points on the curve $y = 2x^3 - 3x^2 - 12x + 20$ at which the tangent is parallel to the *x*-axis.

Part	Marks	Level	Calc.	Content	Answer	U1 OC3
	4	С	NC	C4		1993 P1 Q4
• ² 6	$\frac{dy}{dx} = \dots$ $6x^2 - 6x - 7$ $\dots = 0$ $x = -1, 2$	12				

6. (a) f(x) = 2x + 1, $g(x) = x^2 + k$, where k is a constant.

(i) Find
$$g(f(x))$$
. (2)

(ii) Find
$$f(g(x))$$
. (2)

(b) (i) Show that the equation
$$g(f(x)) - f(g(x)) = 0$$
 simplifies to
 $2x^2 + 4x - k = 0.$ (2)

- (ii) Determine the nature of the roots of this equation when k = 6. (2)
- (iii) Find the value of k for which $2x^2 + 4x k = 0$ has equal roots. (3)

Part	Marks	Level	Calc.	Content	Answer	U2 OC1
<i>(a)</i>	4	С	NC	A4		1996 P2 Q4
<i>(b)</i>	7	C	NC	A17, A18, A6		
(a)	(a) $\cdot^{1} g(2x+1)$ $\cdot^{2} (2x+1)^{2} + k$ $\cdot^{3} f(x^{2}+k)$ $\cdot^{4} 2(x^{2}+k)+1$		b^{6} $4x^{2}$ so b^{7} b^{2}	$4 + 4x + k + 1 \text{ AND } 2x^{2} + 2x^{2}$ + 4x + k + 1 - $(2x^{2} + 2k + 1)^{2}$ 2x ² + 4x - k = 0 - 4ac = 16 - 4 × 2 × (-6) = 6 roots real & distinct	$\left(1 \right) = 0$	
					$4ac = 16 - 4 \times 2 \times (-k)$ $4ac = 0 \text{for equal roots}$	

[SQA] 7. Show that the equation $(1-2k)x^2 - 5kx - 2k = 0$ has real roots for all integer values of *k*.

Part	Marks	Level	Calc.	Content	Answer U2 OC1
	5	A/B	CN	A18, A16, CG	D proof 2002 P2 Q9
• ² • ³ • ⁴		k out dis plify to ose to d	scrimina quadrat raw tab	ant	 •¹ discriminant = •² disc = (-5k)² - 4(1 - 2k)(-2k) •³ 9k² + 8k •⁴ e.g. draw a table, graph, complete the square •⁵ complete proof and conclusion relating to disc.≥ 0

[SQA] 8. When $f(x) = 2x^4 - x^3 + px^2 + qx + 12$ is divided by (x - 2), the remainder is 114. One factor of f(x) is (x + 1).

Find the values of p and q.

Part	Marks	Level	Calc.	Content	Answer	U2 OC1
	5	С	CN	A21		1991 P1 Q6
• ² f • ³ 4 • ⁴ p	(2) = 114 (-1) = 0 p + 2q = 78 -q = -15 = 8, q = 23					

[SQA] 9. Given that $\tan \alpha = \frac{\sqrt{11}}{3}$, $0 < \alpha < \frac{\pi}{2}$, find the exact value of $\sin 2\alpha$.

Part	Marks	Level	Calc.	Content	Answer	U2 OC3				
	3	С	NC	T8		1995 P1 Q12				
•1	"third sid	$e'' = \sqrt{20}$	45							
•2	$\sin \alpha = \frac{\sqrt{11}}{\sqrt{20}} or \cos \alpha = \frac{3}{\sqrt{20}}$									
•3	$2 \times \frac{\sqrt{11}}{\sqrt{20}} \times$	$\frac{3}{\sqrt{20}}$								

[SQA] 10.

- (*a*) Show that $2\cos 2x^{\circ} \cos^2 x^{\circ} = 1 3\sin^2 x^{\circ}$.
- (*b*) Hence solve the equation $2\cos 2x^\circ \cos^2 x^\circ = 2\sin x^\circ$ in the interval $0 \le x < 360$.

Part	Marks	Level	Calc.	Content	Answer	U2 OC3
<i>(a)</i>	1	С	CR	T8		1997 P1 Q18
<i>(a)</i>	1	A/B	CR	T8		
(b)	1	С	CR	T10		
<i>(b)</i>	3	A/B	CR	T10		
	substitute substitute	NA-110-212-012-020	needoon and the	CONTRACT ADDRESS	• ³ $3\sin^2 x^\circ + 2\sin x^\circ - 1 = 0$ • ⁴ $(3\sin x^\circ - 1)(\sin x^\circ + 1) = 0$ • ⁵ $\sin x^\circ = \frac{1}{3}, -1$ • ⁶ 19.5, 160.5, 270	

Page 5

5

2

4

Quest

11. Solve $2\cos 2x - 5\cos x - 4 = 0$ for $0 \le x < 2\pi$.

Part	Marks	Level	Calc.	Content	Answer U2 OC3
	5	В	CN	T10, T7	x = 2.419, 3.864 2010 P2 Q4
•2 •3 •4	formula ic: exp ss: star pd: red pd: con	oress as c et to solv uce to ec mplete	quadrat re quation solutior	loubleangleic in $\cos x$ s in $\cos x$ onlyns toinclude=kwith	• ¹ $2 \times (2\cos^2 x - 1) \cdots$ • ² $4\cos^2 x - 5\cos x - 6 = 0$ • ³ $(4\cos x + 3)(\cos x - 2) = 0$ • ⁴ $\cos x = -\frac{3}{4}$ and $\cos x = 2$ • ⁵ 2.419 , 3.864 and no solution.

[SQA] 12. A is the point (2, -5, 6), B is (6, -3, 4) and C is (12, 0, 1). Show that A, B and C are collinear and determine the ratio in which B divides AC.

Part	Marks	Level	Calc.	Content	Answer	U3 OC1
	4	С	CN	G23, G25	2:3 or equivalent	1996 P1 Q6
•1	$\overrightarrow{AB} = \begin{pmatrix} 4 \\ 2 \\ -2 \end{pmatrix}$	or AC	$= \begin{pmatrix} 10\\5\\-5 \end{pmatrix} o$	$r \overrightarrow{BC} = \begin{pmatrix} 6\\ 3\\ -3 \end{pmatrix}$	• ³ AB $ BC$ and B is poir	nt in common
•2	$\overrightarrow{AB} = 2 \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$	and E	$\overrightarrow{BC} = 3 \begin{pmatrix} 2 \\ 1 \\ - \end{pmatrix}$) or equivalent	• ⁴ 2:3 (<i>or</i> equivalent e.g. 1	:1 <u>1</u>)

[END OF QUESTIONS]